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To understand the influence of structure on the function of neural networks, we study the storage capacity
and the retrieval time of Hopfield-type neural networks for four network structures: regular, small world,
random networks generated by the Watts-Strogatz �WS� model, and the same network as the neural network of
the nematode Caenorhabditis elegans. Using computer simulations, we find that �1� as the randomness of
network is increased, its storage capacity is enhanced; �2� the retrieval time of WS networks does not depend
on the network structure, but the retrieval time of C. elegans’s neural network is longer than that of WS
networks; �3� the storage capacity of the C. elegans network is smaller than that of networks generated by the
WS model, though the neural network of C. elegans is considered to be a small-world network.
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I. INTRODUCTION

The brain has various functions such as memory, learning,
awareness, thinking, and so on. These functions are produced
by the activity of neurons that are connected to each other in
the brain. There are many models to reproduce the memory
of the brain, and the Hopfield model is one of the most
studied �1�. The Hopfield model was proposed to reproduce
associative memory, and it has been studied extensively by
physicists because this model is similar to the Ising model of
spin glasses. This model was studied circumstantially, for
example, the storage capacity was analyzed by the replica
method �2,3�. However, in these studies, the neural networks
are completely connected, i.e., each neuron is connected to
all other neurons. It was not clear how the properties of the
model depend on the connections of neurons until recently.

In recent years the study of complex networks has been
paid much attention. A network consists of vertices and
edges. A vertex is a site or point on the network such as a
neuron; the vertices are connected by edges such as an axon
or synapse of a neuron. Several characteristic network struc-
tures have been proposed, and the small-world and the scale-
free networks have been studied heavily. Small-world net-
works have the properties that the characteristic path length
is very short, and simultaneously the clustering coefficient is
large �4�. Here, the characteristic path length is the average
path length between any two vertices on the network, and the
clustering coefficient represents the degree of its connectivity
among the neighbors of a given vertex. Scale-free networks
have the distribution of degrees following a power law,
where the degree is the number of neighbors of each vertex
�5�. These characteristic networks have been identified in
various real networks such as acquaintance networks, the
World Wide Web, power grids, and neural networks, etc.
�6,7�. A model reproducing the small-world networks was
proposed by Watts and Strogatz �WS� �4�. A model reproduc-
ing scale-free networks was proposed by Barabási and Albert
�8�. These models are often used to study complex networks.

In the brain it is believed that the neural network also
forms a small-world network �9,10�. For example, the neural
network of the nematode Caenorhabditis elegans is small
world. It is an important question why the neural network is

a small-world network. It is possible that neural networks are
small world in order to optimize some of their functions. To
answer this question, it is necessary to understand first how
the network structure affects the functions. Some researchers
focus on the associative memory of neural networks to un-
derstand the effects of the network structure, and they have
investigated either small-world or scale-free networks
�9,11–15�. According to these studies, the stability of stored
patterns depends on the controlling parameter of the network
structure in the WS model �9� and on the clustering coeffi-
cient of the network �13�. In these investigations, the effects
of network structure on memory have been studied through
the stability of the stored patterns on several networks. How-
ever, it is not clear how many patterns the system can store in
various networks, and how the number of patterns that can
be stored depends on the characteristic path length and the
clustering coefficient. This upper limit of the number of pat-
terns that can be stored is called the storage capacity, and this
quantity is important because the system changes from the
storable phase to a spin-glassy phase at this point. In addi-
tion, the effects of the network structure on the time required
for the system to retrieve patterns have not been studied yet.
We define this time as the retrieval time, and it is worth
studying the retrieval time because it is not useful for the
neural network to store many patterns if retrieving them
takes a long time.

In this paper, we investigate how the storage capacity and
the retrieval time of the associative memory of a Hopfield-
type model depend on the characteristics of the network. The
connection of neurons is determined by the structure of the
network, in contrast to the Hopfield model where all neurons
are connected mutually. We focus on the small-world net-
work generated by the WS algorithm and the neural network
of the nematode C. elegans. C. elegans is a living organism,
the neural network of which has been investigated experi-
mentally. We show that �1� as the randomness of network is
increased, its storage capacity is enhanced; �2� the retrieval
time of WS networks does not depend on the network struc-
ture, but the retrieval time of C. elegans’s neural network is
longer than that of WS networks; �3� the storage capacity of
the C. elegans network is smaller than that of networks gen-
erated by the WS model with the same number of neurons
and average degree.
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In Sec. II, we explain the model in detail, and we show
the results of computer simulation in Sec. III. In Sec. IV, the
results are analyzed. We discuss these results in Sec. V.

II. MODEL

A. Hopfield model on a network

We use McCulloch-Pitts neurons �16�, each element of
which can have only two states, Si=1 �firing� and −1 �not
firing�. Each neuron is connected to some other neurons via
synaptic connections, which are characterized by their syn-
aptic weights Jij determined by stored patterns. To represent
connectivity among neurons, we use the adjacency matrix
�aij�, where aij =1 when there is a connection between i and
j, aij =0 otherwise. The adjacency matrix �aij� uniquely de-
termines the structure of the network.

The stored patterns in the neural network are represented
by network states ��, where �=1, . . . , p, p being the number
of stored patterns. These patterns are randomly generated
with probabilities P��i

�= ±1�=1/2. Using these patterns, the
synaptic weights Jij are given by the Hebbian rule

Jij =
1

�k�
aij	

�=1

p

�i
�� j

� �1�

for i , j=1, . . . ,N. Here, N is the number of neurons in the
network, and �k� is the average degree of the network. The
degree is defined by the number of neighbors of a vertex. We
set Jii=0, so that no connection within a neuron is allowed.

The state of neurons is updated asynchronously by the
Monte Carlo method. A neuron is chosen at random, and the
state of each neuron is updated according to

Si = sgn
	
j=1

N

JijSj� . �2�

The Monte Carlo time is advanced by 1 after N neurons have
been accessed by the updating process.

B. Storage capacity

To quantify pattern retrieval, we use the overlap order
parameters �2�

m� =
1

N
	
i=1

N

Si�i
�, �3�

where � is the pattern number. The overlap is a parameter
which represents the degree of similarity between the state of
the system S and the stored pattern ��. For example, m1=1 if
the state is the same as the pattern �1, while m1=0 if the state
is far from the pattern �1.

We measure the stability of the pattern �1 to check
whether it is stored or not. First, we construct the structure of
the network �aij�. Second, we store p random patterns in the
network by setting Jij according to Eq. �1�. We change p
from 1 to 50 to judge the storage capacity. Third, we initial-
ize the system to the pattern �1 at t=0, and evolve the state in
time until the dynamics converges. Finally, to check whether

the pattern �1 is stored or not, we measure the overlap m1

between the final state and �1. The pattern �1 is considered as
stored if the overlap m1 is no less than 0.9. When m1�0.9,
the number of error bits defining the difference between the
final state of network and the pattern �1 is no more than 5%
of all bits. It is practically reasonable that a pattern within
5% error is considered as being stored.

Repeating the above procedure several times by using dif-
ferent samples of networks and stored patterns, we count up
the number of times that the pattern is successfully stored,
and calculate the fraction of the number of trials that is suc-
cessfully stored. These calculations are the same as those
used for all-to-all connection networks in Ref. �17�. We de-
fine this fraction as the retention rate. The retention rate is
unity when p is small, while it is 0 when p is large. There
exists a transition point where the retention rate changes
from 1 to 0 sharply when p is increased. Therefore, we define
the storage capacity �c� pc /N as the number of patterns
when the retention rate becomes 0.5.

C. Retrieval time

The retrieval time is defined as the time required for the
system to retrieve a stored pattern. The time t is measured in
Monte Carlo time steps. First, we initialize the system to the
state of the pattern �1 with noise. To add noise to �1, we
select some neurons of �1 randomly and flip them, and
m1�t=0� is set as 0.9, 0.8, 0.7, 0.6 in this way. We do not use
smaller m1�0� than these values, because the system tends to
go to a different stable point from the pattern �1, if m1�0� is
small. Next, we measure m1�t� at each time step until the
dynamics converges. This convergence time is denoted as tf.
After repeating this procedure several times for other
samples, we scale the overlap m1�t� and calculate its average
according to

f�t� = 
 m1�t� − m1�tf�
m1�0� − m1�tf�

� , �4�

where f�0�=1 and f�t� tf�=0. We define the retrieval time as
the reciprocal of the slope of −ln f�t�, i.e.,

1

�
= −

d ln f�t�
dt

�5�

because f�t� decays exponentially.

III. RESULTS

First, we compared regular, small-world, random net-
works which are generated by the Watts-Strogatz model �4�
in order to understand the effects of network structure in this
model. Next, we compared the neural network of the nema-
tode C. elegans �18� and WS networks in order to clarify
differences between the real and model networks.

A. Results for the WS model

We carried out a Monte Carlo simulation of the Hopfield
model with several networks generated by the WS model
with N=1000 and average degree �k�=100. First, we con-
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structed a network with a probability r, where r is the rewir-
ing probability in the WS model. The edges on the network
are selected by r, and they are rewired randomly. The net-
work is regular, random, and small world when r=0, r=1,
and 0�r	1, respectively. Second, we stored p random pat-
terns, from 1 up to 50, by setting Jij according to Eq. �1�.
Third, we evolved the system in time and measured the over-
lap m1 after the dynamics converged. We repeated this pro-
cedure 500 times using different samples of networks and
patterns with the same r and p.

We used r=0, 0.1, and 1 each of which corresponds to a
regular, small-world, and random network, respectively. Fig-
ure 1 shows the retention rate as a function of �= p /N. The
storage capacity �c is defined by � when the retention rate
becomes 0.5. From Fig. 1, we find

�c = �0.022 for regular, r = 0,

0.024 for small world, r = 0.1,

0.032 for random, r = 1.
�

We got these values by fitting the lines with �1+tanh�a��c

−���� /2, where a and �c are fitting parameters. We find that
the storage capacity is an increasing function of r. �c de-
pends on N and �k�, but its qualitative behavior that the stor-
age capacity is an increasing function of r is invariant.

Next, we measured the retrieval time of the model, which
is shown in Fig. 2 for four different initial states, i.e., m1�t
=0�=0.9,0.8,0.7,0.6, when three patterns were stored.
These data were calculated using 10 000 different samples of
networks and patterns. We find that the retrieval time of all
networks is approximately one Monte Carlo step because the
slope of ln f�t� is unity. Therefore, it does not strongly de-
pend on network structure. We confirmed that this result is
independent of N and �k�.

B. Results for C. elegans

C. elegans is a living organism used frequently in biologi-
cal experiments. Although its neural network consists of only

302 neurons, it has abilities of learning and memory. The
connections in this network have been investigated experi-
mentally, and its data are available from the database on the
web �18�.

We reconstructed C. elegans’s network by using the con-
nection data from the database �18�. A connection between
two neurons by either a synapse or a gap junction is assumed
to be an undirected edge. If there are two or more connec-
tions between two neurons, we regarded them as one con-
nection. C. elegans’s network is a small-world network with
N=251 and �k��14, because it has about the same L as but
larger C than the random network �Table I�.

We carried out the same procedure as in the previous
section for the neural network of C. elegans. We compared
its storage capacity with that of three WS networks, r
=0,0.3,1, which have the same number of neurons �N
=251� and approximately the same average degree ��k�
=14�. The WS network with r=0.3 has roughly the same
characteristic path length L and clustering coefficient C as C.
elegans’s network. Figure 3 shows the retention rate as a
function of �. The storage capacity of C. elegans’s network
is the smallest among the networks examined,

�c = �
0.022 for regular, r = 0,

0.024 for small world, r = 0.3,

0.026 for random, r = 1,

0.018 for C. elegans.
�

The retrieval time is shown in Fig. 4 for different initial
states m1�t=0�=0.9,0.8,0.7,0.6, when one pattern was
stored. The retrieval time of WS networks is one Monte
Carlo step, as in the previous section. The neural network of
C. elegans retrieved a stored pattern more slowly than other
networks; its retrieval time is approximately 1.1 Monte Carlo
steps. We conclude that the retrieval time of WS networks
does not depend on the structure of the network, but the
retrieval time of C. elegans is longer than that of WS net-
works.

IV. ANALYSIS

We analyzed the relations between the storage capacity
and network properties in order to understand what charac-
teristics of the structure of the network determine the storage
capacity. We calculated the storage capacities of the neural
networks generated by the WS model with several probabili-
ties, and plotted them against the rewiring probability r �Fig.
5�, the characteristic path length L �Fig. 6�, and the clustering
coefficient C of each network �Fig. 7�. Each set of data is
fitted by a curve as a guide for the eyes. According to Fig. 6,
the characteristic path length may have a large effect on the
storage capacity because the storage capacity changes sig-
nificantly in the area of L�2. The data are fitted well by
�c�L�=aL�L−bL�−cL +dL. Here the fitting parameters are aL

=0.0005, bL=2cL=0.8, dL=0.02. On the other hand, accord-
ing to Fig. 7, the storage capacity depends on the clustering
coefficient linearly. The data are fitted well by �c�C�=aCC
+bC, and the fitting parameters are aC=−0.02, bC=0.03.

α
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Regular : r = 0
Small-world : r = 0.1
Random : r = 1

FIG. 1. Retention rate as a function of �= p /N. The squares,
circles, and triangles represent regular �r=0�, small-world �r=0.1�,
and random networks �r=1�, respectively. All networks have N
=1000 and �k�=100.
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Therefore the storage capacity may depend on both L and C.
In Fig. 5, �c is saturated at large r because C is saturated at
large r. The data are fitted well by �c�r�=ar tanh�brr�+0.02,
and the fitting parameters are ar=−0.01, br=2.

Next, in order to investigate the dependence of the degree
distribution of neural networks, we compared the storage ca-
pacities of the random network generated by the WS model
and the random network in which all neurons have the same
degree, called a regular-random network. The regular-
random network is a random network whose edges are ran-

domly connected, but each neuron has the same degree. We
generated this network by connecting two neurons selected
randomly under the condition that each neuron has the same
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FIG. 2. Process of retrieval in different networks, regular �squares�, small-world �circles�, and random networks �triangles�, when p=3.
All networks have N=1000 and �k�=100. The initial state of the system is m1�0�= �a� 0.9, �b� 0.8, �c� 0.7, and �d� 0.6.

TABLE I. The characteristic path length L and clustering coef-
ficient C of the C. elegans, the random �r=1�, and the small-world
network �r=0.3� generated by the WS model. C. elegans’s network
has about the same L as the random network, while it has larger C.
The small-world network with r=0.3 has roughly the same L and C
as C. elegans’s network.

Network L C �k�

C. elegans 2.65 0.245 �14

Random �r=1� 2.38 0.0525 14

Small world �r=0.3� 2.54 0.261 14
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Small-world : r = 0.3
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C.elegans

FIG. 3. Retention rate in C. elegans neural network �diamonds�.
Data for three WS networks are also shown for comparison. These
networks are regular �squares�, small world �circles�, and random
�triangles�, which have the rewiring probability r=0, 0.3, and 1,
respectively. All networks have N=251 and �k��14.
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number of neighbors. On the other hand, the degree distribu-
tion of the random network generated by the WS model with
r=1 obeys the Poisson distribution approximately. By com-
paring the results for these networks, we can understand the
effects of a neuron that has lower or higher degree than av-

erage. The relation between the storage capacity and the net-
work properties of this network are plotted in Figs. 6 and 7.
There is little difference between the storage capacities of the
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FIG. 4. Process of retrieval in different networks, i.e., regular �squares�, small world �circles�, random �triangles�, and C. elegans
�diamonds�, when p=1. All networks have N=251 and �k��14. The data of C. elegans are fitted with a line of slope approximately 1/1.1.
The initial state of the system is m1�0�= �a� 0.9, �b� 0.8, �c� 0.7, and �d� 0.6.
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FIG. 5. Storage capacity as a function of the rewiring probabil-
ity r. The parameters are N=1000 and �k�=100. The curve is a
guide for the eyes.
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FIG. 6. Storage capacity as a function of the characteristic path
length of different networks: that generated by the Watts-Strogatz
model �squares� and the regular-random network �circles�. The pa-
rameters are N=1000 and �k�=100. The curve is a guide for the
eyes.
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regular-random network and random network. We conclude
that the storage capacity does not depend much on the degree
distribution.

V. DISCUSSION

We investigated the storage capacity and the retrieval time
of the Hopfield model on several different networks. We
showed that the storage capacity depends on the randomness
of networks. We found that the retrieval time of WS net-
works does not depend on the network structure, but the

retrieval time of C. elegans’s neural network is longer than
that of WS networks. The storage capacity may depend on
both the characteristic path length and the clustering coeffi-
cient. However, it is unclear which effect is larger because L
and C cannot be changed independently in the WS model.
The effect of C was studied in Ref. �13�, but the effect of L
still has not been studied independently. It is a topic for
future research to clarify the effects of network properties
independently. Furthermore, the storage capacity of C. el-
egans’s network is smaller than that of the network generated
by the WS model. We consider that C. elegans’s network has
a small storage capacity because it has many neurons whose
degree is 1. The error often occurs on a neuron with k=1,
because its state becomes different from a stored pattern
whenever its neighborhood goes to the different state from
stored.

The neural network in the brain is thought to be small
world. However, the results in this paper show that more
randomized networks have more storage capacity, and the
real neural network of C. elegans has a longer retrieval time
than WS networks. Our work implies that the neural network
of the brain is not optimized only for maximizing the storage
capacity and minimizing the retrieval time. The reason why
the brain’s network is not random but small world may be
that making long-distance connections as in a random net-
work costs more energy or proteins than making short-
distance connections �9�. The question why the neural net-
work is small world is still unresolved. The other possibility
is that the Hopfield model does not explain the memory of
the brain well. Then we need a better model than the
Hopfield model in order to reproduce the memory of the
brain.
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